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Spatial Point Patterns

Lecture #1

Point pattern terminology

 Point is the term used for an arbitrary location

 Event is the term used for an observation

 Mapped point pattern: all relevant events in a study 

area R have been recorded

 Sampled point pattern: events are recorded from a 

sample of different areas within a region
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Objective of point pattern analysis

 Determine if there is a tendency of events to exhibit a 

systematic pattern over an area as opposed to being 

randomly distributed

 Point data often have attributes, but right now we are 

only interested in the location in point pattern analysis

 Does a pattern exhibit clustering or regularity?

 Over what spatial scales do patterns exist?

Types of distributions

 Three general patterns

 Random - any point is equally likely to occur at any location 

and the position of any point is not affected by the position of 

any other point

 Uniform - every point is as far from all of its neighbors as 

possible

 Clustered - many points are concentrated close together, and 

large areas that contain very few, if any, points
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RANDOM UNIFORM CLUSTERED

Types of distributions

Methods

 “Exploratory” analysis

 Visualization (maps)

 Estimate how intensity of point pattern varies over an area

 Quadrat analysis, kernel estimation

 Estimate the presence of spatial dependence among events

 Nearest neighbor distances, K-function

 Modeling techniques

 Statistical tests for significant spatial patterns in data, compared 

with the null hypothesis of complete spatial randomness (CSR)

 Much of the time we do both!
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How Bailey & Gatrell see it

 Exploring 1st order properties

 Measuring intensity – based on the density (or mean number 

of events) in an area

 Quadrat analysis

 Kernel estimation

 Exploring 2nd order properties

 Measuring spatial dependence – based on distances of points 

from one another

 Nearest neighbor distances

 K-function

Modeling techniques

 We can conduct statistical tests for significant patterns in 

our data

 H0: events exhibit complete spatial randomness (CSR)

 Ha: events are spatially clustered or dispersed

 What is complete spatial randomness? 

 What are we comparing our point pattern to?
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Complete spatial randomness

 CSR assumes that points follow a homogeneous Poisson process

over the study area

 The density of points is constant (homogeneous) over the study area

 For a random sample of subregions, the frequency distribution of the 

number of points in each region will follow a Poisson distribution

 # of points in an given subregion is the same for all subregions in study area

 # of points in a subregion independent of # of points in any other subregion

Some notes on R

> library(maptools)

> library(rgdal)

> library(shapefiles)

> library(spatstat)

> library(splancs)

> workingDir = "C:/Users/Eroot/Quant/R"
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Splancs and Spatstat in R

 Use different data file formats for analysis

 Both need a set of “points” and a study area “boundary”

 Splancs
> library(shapefiles)

> border <- readShapePoly(paste(workingDir, 

"/shapefiles/FLBndy.shp", sep=""))

> flbord <- border@polygons[[1]]@Polygons[[1]]@coords

> str(border)

> flinv<-readShapePoints("C:/Users/Elisabeth 

Root/Desktop/Quant/R/shapefiles/FL_Invasive.shp")

> flinvxy<-coordinates(flinv)

Splancs and Spatstat in R

 Spatstat
> library(shapefiles)

> library(maptools)

> flinv<-

readShapePoints("C:/Users/Eroot/Quant/R/shapefiles/ 

FL_Invasive.shp")

> flpt<-as(flinv,"ppp")

> border <- readShapePoly(paste(workingDir, 

"/shapefiles/FLBndy.shp", sep=""))

> flbdry<-as(border,"owin“)

> flppp<-ppp(flpt$x,flpt$y,window=flbdry)
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Sample dataset plot

 Dataset: Location of 

Cogon Grass 

(invasive species in 

FL)

> plot(flppp, axes=T)

Quadrat methods

 Divide the study area into subregions of equal size

 Often squares, but don‟t have to be

 Count the frequency of events in each subregion

 Calculate the intensity of events in each subregion
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Quadrat methods

Quadrat method

 Compare the intensity variation over R
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1 3 9

2 1 1
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To test for CSR, calculate the test statistic 

for quadrat (2):

m = # of quadrats

s2 = observed variance

x = observed mean

Compare to 2 distribution with m-1 

degrees of freedom

x

sm 2)1( 


Quadrats in R

 Done using spatstat package

> qt <- quadrat.test(flppp,     

nx = 10, ny = 10)

> qt

Chi-squared test of CSR using 

quadrat counts

X-squared = 1239.057, df = 89, 

p-value < 2.2e-16

> plot(flppp)

> plot(qt, add = TRUE, cex = 

.5)



3/11/2010

10

Weaknesses of quadrat method

 Quadrat size

 If too small, they may contain only a couple of points

 If too large, they may contain too many points

 Actually a measure of dispersion, and not really pattern, 

because it is based primarily on the density of points, and 

not their arrangement in relation to one another

 Results in a single measure for the entire distribution, so 

variations within the region are not recognized

Kernel estimation

 Believe it or not, we already talked about this with GWR!

 Calculating the density of events within a specified search 
radius around each event

 A moving three-dimensional function (the kernel) of a given 
radius (bandwidth) „visits‟ each point in the study area

 Use kernel to weight the area surrounding the point 
proportionately to its distance to the event

 Sum these individual kernels for the study region

 Produce a smoothed surface

 Variety of different kernels

 Bivariate quartic most common
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Kernel estimation

• Creating a smooth surface for each kernel

• Surface value highest in the center (point location) and

diminishes with distance…reaches 0 at radius distance

Kernel estimation

 s is a location in R (the study area)

 s1…sn are the locations of n events in R

 The intensity at a specific location is estimated by:

 Summed across all points si within the radius ()
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Uniform

Triangular

Quartic

Gaussian

Different types of kernels
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Each kernel type has a different equation 

for the function k, for example:
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Kernel estimation

 The kernel (k) is basically a mathematical function that 

calculates how the surface value “falls off” as it reaches 

the radius

 There are lots of different kernel functions

 Most researchers believe it doesn‟t really matter which you use

 Most common in GIS is the quartic kernel

 Summed for all values of di which are not larger than 
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At point s, the weight is

3/2 and drops smoothly 

to a value of 0 at 

http://en.wikipedia.org/wiki/File:Kernel_uniform.svg
http://en.wikipedia.org/wiki/File:Kernel_triangle.svg
http://en.wikipedia.org/wiki/File:Kernel_quartic.svg
http://en.wikipedia.org/wiki/File:Kernel_exponential.svg
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Kernel estimation
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Individual “bumps”

Adding up the “bumps”

A few notes

 Like GWR, we can used fixed and adaptive kernels

 Fixed = bandwidth is a specified distance

 Adaptive = fixed number of points used

 Results are sensitive to change in bandwidth

 When bandwidth is larger, the intensity will appear smooth and 

local details obscured

 When bandwidth is small, the intensity appears as local spikes 

at event locations

 No agreement on how to select the “best” bandwidth

 prior information about underlying spatial process

 comparison of various bandwidths

 using Mean Square Error (in R)
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Kernel estimation in R

 Can be done in both splancs and spatstat

 splancs = quartic kernel

 spatstat=gaussian kernel

 Mean standard error one way to find “optimal bandwidth”

> mse<-mse2d(flinvxy,flbord, 100, 600)

> plot(mse$h, mse$mse, xlab="Bandwidth", ylab="MSE", 

type="l", xlim=c(100,600), ylim=c(-30,50))

> i<-which.min(mse$mse)

> points(mse$h[i], mse$mse[i])
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Kernel estimation in R

 Need to make a grid to “dump” kernel estimates into
 The Sobj_SpatialGrid() function in maptools takes a maxDim= 

argument, which indirectly controls the cell resolution

> sG <- Sobj_SpatialGrid(border, maxDim=400)$SG

> grd <- slot(sG, "grid")

> summary(grd)

 Can also create a GridTopology object from scratch:
> poly <- slot(border, "polygons")[[1]]

> poly1 <- slot(poly, "Polygons")[[1]]

> coords <- slot(poly1, "coords")

> min(coords[,1])

> min(coords[,2])

> grd <- GridTopology(cellcentre.offset=c(616593,531501), 
cellsize=c(150,150), cells.dim=c(400,400))

> summary(grd)

Kernel estimation in R

 Using splancs
> k0 <- spkernel2d(flinvxy, flbord, h0=400, grd)

> k1 <- spkernel2d(flinvxy, flbord, h0=600, grd)

> k2 <- spkernel2d(flinvxy, flbord, h0=800, grd)

> k3 <- spkernel2d(flinvxy, flbord, h0=1000, grd)

> df <- data.frame(k0=k0, k1=k1, k2=k2, k3=k3) 

> kernels <- SpatialGridDataFrame(grd, data=df)

> summary(kernels)

> gp <- grey.colors(5, 0.9, 0.45, 2.2)

> print(spplot(kernels, at=seq(0,.00001,length.out=20),

col.regions=colorRampPalette(gp)(21)))

 Using spatstat
> plot(density(flppp, sigma = 600))
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Nearest neighbor analysis

G-function

 Simplest measure and is similar to the mean

 Examine the cumulative frequency distribution of the 

nearest neighbor distances
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neighbor rmin

1 66.22 32.54 10 25.59
2 22.52 22.39 4 15.64
3 31.01 81.21 5 21.14
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8 8.23 39.93 4 9.00
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G-function

The shape of G-function tells us the way the events 

are spaced in a point pattern

 Clustered = G increases 

rapidly at short distance

 Evenness = G increases 

slowly up to distance where 

most events spaced, then 

increases rapidly

 How do we examine 

significance (significant 

departure from CSR)?
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G

(r
)

Distance (r)

How do we tell if G is significant?

 The significance of any departures from CSR (either 

clustering or regularity) can be evaluated using simulated 

“confidence envelopes”

 Simulate many (1000??) spatial point processes and 

estimate the G function for each of these

 Rank all the simulations

 Pull out the 5th and 95th G(r) values 

 Plot these as the 95% confidence intervals

 This is done in R!

G
(r

)

radius (r)

95th

5th
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G estimate in R
> r=seq(0,350,by=50)

> G <- envelope(flppp, Gest, r=r, nsim = 59, rank = 2)

> G

Pointwise critical envelopes for G(r) 

Edge correction: “km” 

Obtained from 59 simulations of CSR 

Significance level of pointwise Monte Carlo test: 2/60 = 0.03333

Data: flppp

Entries:

id      label     description

-- ----- -----------

r       r distance argument r

obs obs(r)    observed value of G(r) for data pattern

theo theo(r)   theoretical value of G(r) for CSR

lo      lo(r)     lower pointwise envelope of G(r) from simulations

hi      hi(r)     upper pointwise envelope of G(r) from simulations

> plot(G)

G estimate in R

Clustered pattern (above the envelopes)

Below envelopes = regular pattern

In envelopes = homogeneous

distribution (CSR)
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Nearest neighbor analysis

F-function

 Select a sample of point locations anywhere in the study 

region at random

 Determine minimum distance from each point to any event in 

the study area

 Three steps:

1. Randomly select m points (p1, p2, …, pn)

2. Calculate dmin(pi, s) as the minimum distance from location pi

to any event in the point pattern s

3. Calculate F(d)

F-function

points sample #

r  r  wherepairspoint  of # 

]),([#
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min

min
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F-function

 Clustered = F(r) rises 

slowly at first, but more 

rapidly at longer distances

 Evenness = F(r) rises rapidly 

at first, then slowly at longer 

distances

 Examine significance by 

simulating “envelopes”
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F estimate in R
> r=seq(0,350,by=50)

> F <- envelope(flppp, Fest, r=r, nsim = 59, rank = 2)

> plot(F)

lty col key   label                                           meaning

obs 1   1  obs obs(r)           observed value of F(r) for data pattern

theo 2   2 theo theo(r)                 theoretical value of F(r) for CSR

hi     3   3   hi   hi(r) upper pointwise envelope of F(r) from simulations

lo     4   4   lo   lo(r) lower pointwise envelope of F(r) from simulations
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F estimate in R

Clustered pattern (below the envelopes)

Above envelopes = regular pattern

Within envelopes = CSR

Comparison between G and F
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K function

 Limitation of nearest neighbor distance method is that it 

uses only nearest distance

 Considers only the shortest scales of variation

 K function (Ripley, 1976) uses more points

 Provides an estimate of spatial dependence over a wider range 

of scales

 Based on all the distances between events in the study area

 Assumes isotropy over the region

K function

 Defined as:

  = the intensity of events (n/A)

event)chosen randomly  ofh  distance w/in events((#
1

)( EhK
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How do we estimate the K-function

1. Construct a circle of radius h around each point event (i)

2. Count the number of other events (j) that fall inside this 

circle

3. Repeat these two steps for all points (i) and sum results

4. Increment h by a small amount and repeat the computation





ji ij

ijh

w

dI

n

R
hK

)(
)(ˆ

2

number of points

area of R

edge correction

the proportion of circumference of circle   

(centered on point i, containing point j)

=1 if whole circle in the study area

dummy variable

1 if dij ≤ h

0 otherwise

Interpreting the K-function

 K(h) can be plotted against different values of h

 But what should K look like for no spatial dependence?

 Consider what K(h) should look like for a random point 

process (CSR)

 The probability of an event at any point in R is independent of 

what other events have occurred and equally likely anywhere 

in R
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Interpreting the K function

 Under the assumption of CSR, the expected number of 

events within distance h of an event is:

 K(h) < h2 if point pattern is regular

 K(h) > h2 if point pattern is clustered

 Now we can compare K(h) to h2

 How do we do this?

2)( hhK  the radius of 

the circle

The density of events should be

evenly distributed across all circles

Interpreting K with L

 This L-function is nothing more than a standardized 

version of the K function

 Transforms the K function so we can easily interpret it

 Compare it to 0

 L(h) = 0 if point process is random

 Peaks of positive values = clustering

 Troughs of negative values = regularity

 Significance of any departures from L=0 evaluated using 

simulated “confidence envelopes”

h
hK

hL 


)(ˆ
)(ˆ

uniform

random

clustered

L
(h

)

radius (h)
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K function in R
> L <- envelope(flppp, Lest, nsim = 59, rank = 2, global=TRUE)

> L

Simultaneous critical envelopes for L(r) 

Edge correction: “iso” 

Obtained from 59 simulations of CSR 

Significance level of  Monte Carlo test: 1/60 = 0.0166667

Data: flppp

Entries:

id      label     description

-- ----- -----------

r       r distance argument r

obs obs(r)    observed value of L(r) for data pattern

theo theo(r)   theoretical value of L(r) for CSR

lo      lo(r)     lower critical boundary for L(r)

hi      hi(r)     upper critical boundary for L(r)

> plot(L)

K function in R
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Real world situations

 In the real world, the location of events is often related to 

underlying patterns

 Population centers

 Events that may not seem to cluster in space, but cluster in 

space time

 There are many (many many) variations of point pattern 

analysis

 Often called “multivariate point pattern” analysis

 Comparing distributions of multiple sets of points


